1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 from base64 import b64decode import rsa
def extended_gcd(aa, bb): lastremainder, remainder = abs(aa), abs(bb) x, lastx, y, lasty = 0, 1, 1, 0 while remainder: lastremainder, (quotient, remainder) = remainder, divmod(lastremainder, remainder) x, lastx = lastx  quotient*x, x y, lasty = lasty  quotient*y, y return lastremainder, lastx * (1 if aa < 0 else 1), lasty * (1 if bb < 0 else 1)
def modinv(a, m): g, x, y = extended_gcd(a, m) if g != 1: raise ValueError return x % m
n = 359567260516027240236814314071842368703501656647819140843316303878351 p = 17963604736595708916714953362445519 q = 20016431322579245244930631426505729 e = 65537 d = modinv(e, (p1)*(q1)) pk = rsa.PrivateKey(n, e, d, p, q) print rsa.decrypt(b64decode('DK9dt2MTybMqRz/N2RUMq2qauvqFIOnQ89mLjXY='), pk)
n = 273308045849724059815624389388987562744527435578575831038939266472921 p = 16549930833331357120312254608496323 q = 16514150337068782027309734859141427 e = 65537 d = modinv(e, (p1)*(q1)) pk = rsa.PrivateKey(n, e, d, p, q) print rsa.decrypt(b64decode('CiLSeTUCCKkyNf8NVnifGKKS2FJ7VnWKnEdygXY='), pk)
n = 333146335555060589623326457744716213139646991731493272747695074955549 p = 19193025210159847056853811703017693 q = 17357677172158834256725194757225793 e = 65537 d = modinv(e, (p1)*(q1)) pk = rsa.PrivateKey(n, e, d, p, q) print rsa.decrypt(b64decode('AK/WPYsK5ECFsupuW98bCFKYUApgrQ6LTcm3KxY='), pk)
